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ABSTRACT

It's known from previous research (Griffin, 1958) that
echolocating bats such as the big brown bat Eptesicus fuscus, can
discriminate between edible and inedible airborne targets using
information carried in the echo returns. The goal of this project
is to build a neural network model which can perform a rudimentary
discrimination task using the same sonar targets. The model is to
serve as a preliminary test of the network's ability to
discriminate, categorize, and generalize from a limited data base.
We plan to use this model in a later study comparing the
performance of our network with the behavioral data collected by
Griffin, trying to duplicate as closely as possible the parameters
of the task originally presented to bats. -
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INMODCTION

Bats (Chiroptera) orient themselves with a biological sonar
system, called echolocation by its discover Donald Griffin
(Griffin, 1958). The echolocating sounds are typically
ultrasonic, with one or both of the frequency-modulated (FM) and
constant-frequency (CF) components. They are used to as sonar
signals to detect, locate, identify and capture airborne preys.
The pursuit sequence is the pattern of behavioral activities
associated with the interception of prey, stereotypical of all
families of bats studied. Figure 1 illustrates different stages
of the sequence. Upon detection of an object of interest, the bat
approaches it, and enters the tracking stage of pursuit. It aims
its head directly at the target, generally with an accuracy of
better than 5 degrees horizontally and vertically (Simmons & Kick,
1984). At the same time it increases its emission rate of sonar
signals from 5-20 sounds/sec to 20-40 sounds/sec. Tracking
usually begins at a distance of approximately 1.5 meters and ends
at about 50 cm away from the target. During the terminal stage,
the bat abruptly increases emission rate up to 200 sounds/sec, at
which point it seizes the target. Identification of targets is
accomplished during tracking and decision-making occurs before a
bat enters the terminal stage. When a bat decides to continue on
with the terminal pursuit, it's committed to completing the
sequence, i.e. physical contact with the target; otherwise, it
breaks off from tracking and takes off in search of other objects
of interest. The entire pursuit maneuver takes less than a
second, over a distance of about 2 meters.

In the original behavioral experiment conducted by Griffin
and associates (Griffin, 1958), target stimuli were projected
into the flight path of a bat, either one at a time, or several
together, in complete darkness. Bats of the family Eptesicus
Fuscus quickly learned to intercept up to 98% of edible mealworms
and avoid over 80% of inedible nylon spheres and disks of various
diameters. This high level of performance suggested a very great
selectivity; the results were far from random. Griffin's group
attempted to measure the echo returns of those different targets
in hope of finding the "mealwormness" or "diskness" that must be
buried within the echoes which would account for shape
recognition. They studied the spectral content of the returned
echoes and could find little significant difference such as would
be used to perform discrimination-- the echoes looked too similar
in spectral content. Almost two decades later, with the advance
of computer technology, we can now get high resolution snap shots
of the time-varying transients in weak echo returns. The
procedures involved acquiring the data are described in the
following section.
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ECHO MEASUREMENTS

An impulse signal is electronically synthesized containing
spectral energy in the ultrasonic up to about 100KHz. It is
delivered to a sound transducer aimed at a target which has been
mounted on a tripod. The echo is picked up by a microphone, and
sent to the A/D port of a signal processing hardware/software
package by RC Electronic, Inc. The sampling rate is 500KHz. The
RC Electronics software allows real-time averaging of the echoes;
averaging brings out the echoes of interest which are otherwise
masked by relatively loud electrical noises. The final averaged
impulse response is then stored in a RC data file.

Measurement of a target is taken at different angular
orientations (figure 2), since an airborne object always tumbles
and turns, thus presenting different reflective surfaces to
incoming sonar signals. For the purpose of this preliminary
study, we chose to record only a small subset of orientations of
the mealworm. We looked specifically for orientations which
yielded echo returns that were similar to disk echoes. For
instance, disks presented at an angle will characteristically
produce two main echoes, one from the reflection off the leading
edge and another from the trailing edge. Many orientations of the
mealworm will actually produce multiple echoes, and we avoided
sampling these returns in order to limit the discrimination task
to the most challenging input vector set. The most ambiguous
returns (two echoes) were obtained by orienting the mealworm at
rotations about a vertical axis which bisects the length of the
worm, and which lies in the plane defined by its natural curl (see
figure 2). Samples were taken at 18 orientations corresponding to
10 degree increments from -90 to 90 degrees of rotation (see
figure 2). The same was done for the 12 millimeter disk. Single
samples were also taken of spheres of various sizes.

DATA PROCESSING

The RC data files were converted into binary files compatible
with ILS (Signal Technology, Inc). An example of the raw data is
given in figure 3 for eighteen orientations of mealworm. Given
that the sampling rate is 500Khz, that the speed of sound is
approximately 300m/s, and that the largest target diameter is less
than 1.5 inches we allowed for 64 data points to represent the
echo return. The files were edited down to 64 points per
orientation. Using ILS, the data were normalized in amplitude so
that all echo return are of the same apparent strength. The
normalization constant was recorded at the end of the file to
serve as an indicator of the original amplitude of the echo
return.

TIE NEURAL MODEL:
BUILDING THE INPUT STATE VECTOR

We chose to model neurons sensitive to amplitude at set times
of arrival rather than to amplitude at set frequencies. The input
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is time-varying rather than spectral. This presented a problem,
however, in accounting for the arrival time of the first (or
leading) echo.

There is a sinusoidal shift in arrival time of the return
echoes over changing angular orientation of mealworm and disk
targets. This shift of arrival time is due to the difference in
range to the leading surface of the target at different
orientations. The bat performs target discrimination during a
tracking phase which lasts approximately 500 msec. During a 500
msec interval, it's estimated empirically that an airborne object
thrown by hand would change its aspect angle anywhere from zero to
about 60 degrees while tumbling in space. As orientation changes,
there will be a shift in the arrival time of the leading echo
superimposed on the shift caused by the relative velocity of the
bat to the target. It is possible that the bat uses this
information to help characterize the target, but behavioral
experiments have shown that size and shape discrimination of
targets is possible even where the objects are stationary and do
not reveal multiple orientations and corresponding shifts in the
leading echo (Simmons & Vernon, 1971). We chose to eliminate this
time shift by reframing the 64 data points so that the leading
echo peaks occur effectively at the same time.

The overall amplitude of an echo is a parameter determined by
target size, shape, and composition as well as range. As the bat
approaches a target, strength of the returning echoes increases.
However, the effect of this decreasing atmospheric attenuation is
compensated biologically a system of automatic gain control in the
bat's middle ear. The middle ear muscle contracts and reduces the
bat's hearing sensitivity to returning echoes by about the same
amount as the amplitude of echoes is increased over a range of 17
cm to 1.7 meter (Kick & Simmons, 1984) With this gain control,
-echoes are heard at a constant sensation level so all changes in
amplitude among returning echoes would reflect changes in
reflective surface of a target, thus useful in target
discrimination. For this reason we included the amplitude
information in our model. We chose to represent amplitude in our
input vector by 32 units sensitive to a range of peak pressure
change. There is an amount of overlap in the sensitivity ranges
of these units such that for any peak pressure, four of the 32
units will respond.

The 32 amplitude units plus 64 temporal units set our input
state vector at dimensionality 96. The full set of vectors can be
seen in figures 4,5, & 6, and on the acetates which can be
overlapped for visual comparison. The "relative weights", or
contributions to length, of the amplitude and temporal portions of
the input vector were adjusted so that the ratio of length in the
dimension of the temporal units to that of the amplitude units was
2:1.

There are a total of 43 vectors in the input vector set.
Items numbered one to eighteen correspond to the 18 orientations
of the mealworm; nineteen to 36 are the eighteen orientations of
the 12mm disk; 37 to 43 are the seven spheres ranging from 1 inch
to 1/8 inch in diameter, respectively.
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TIE NETWORK MODEL

An Auto-hetero 96 x 96 matrix was constructed by associating
the state vector of a target at a particular orientation to an
output vector derived from an orthogonal set of walsh vectors.
Learning is performed by the program LEARN.FOR (listing in
appendix), which associates the input vector to the appropriate
output vector, and then associates the output vector to itself.
All learning is done with Widrow-Hoff error correction.

The output vector is composed of 96 elements divided into two
fields. The first field contains a 32 dimensional walsh vector
that represents the category of echo return. There are nine
different possible walsh vectors in this field corresponding to
the nine different objects: mealworm, disk, and seven spheres of
different diameters. The second field contains a 64 dimensional
walsh vector which is unique for every object and every
orientation (a total of 43 different walsh vectors can appear in
this field). The clustered nature of the activation in the input
vector sets shown in figure 7a proved to be seriously non-
orthogonal with the walsh vectors in the output set. This is
because many of the walsh vectors had large regions of positive or
negative activation which overlapped similarly contiguous regions
in the input vectors. We overcame this problem by randomly
shuffling the element order in the entire input vector set
according to a fixed schedule, thereby distributing activation
evenly over the length of the vector element list.
The entire input vector set both before and after shuffling
appears in figure 7. The output vector set appears in figure 8.

Although all 43 vectors are shown in both the input and
output set, only the odd numbered orientations of both the disks
and the mealworms were learned by LEARN.FOR. LEARN associates
individual input/output pairs on a random basis according to the
following frequencies:

I
1 of 9 odd mealworm orientations ........ 40%
1 of 9 odd disk orientations............40%

1 of 7 spheres ......................... 20%

A total of 5000 presentations were made to build the matrix used
in this study. The presentation record is given in Table 1.

SYSTEM PERFORMANCE

Discrimination performance was tested with the program
DISCRIM.FOR (listing in appendix). DISCRIM uses the Brain-State
in-a-Box model (BSB, Anderson) of saturation disambiguation, and
it features flexible menu-driven control of the iteration
parameters which allowed us to "fine tune" the system for the best
recall performance. The output is a three-dimensional plot which
shows a partial decomposition of the input vector at certain
points during the iterations. The decomposition indicates the
relative strength of the 43 output vectors as components of the
input vector. This is measured by normalizing and taking the dot
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product of the iterating vector with each of the output vectors to
yield the cosine of the angle between the two. Figure 9 shows an
example of the output for item #17 (mealworm at orientation 80
deg). The two-dimensional plot at the top shows a cross section
of the three-dimensional surface at item #17 which is simply the
cosine of the angle between the iterating vector and output vector
#17. The first line of the 3-D plot at the bottom is a
decomposition of the "first-pass" vector-- the normalized output
vector resulting from the very first matrix multiplication. The
first-pass vector represents the system's initial recognition
using only the hetero (input to output) associations. This vector
is then added to the original input vector and iterated according
to the formula:

Gi=A(FiT)
Fi+l= Thresh(a*Fi + b*Gi + c*Fo)

where FO= the original input vector
A = the association matrix
a,b,c are scalar constants

For this study we found the following values to
yield the best performance: a=0.99, b=0.05, c=0.0
a=0.99 corresponds to a decay of the input vector
information to 50% its original length by 75
iterations.

Thresh is a thresholding function which limits the
absolute value of every element in the vector to a
maximum value. For this study, elements saturated
at a value of +/_ 1.4.

For the case of the initial first-pass vector, i=0, and so

Fl= a*F0 + b*A(FoT) + c*F0

F1 is displayed on the seventh line of the plot, and subsequent
lines show Fi at later iterations (in figure 9, a line is
displayed after 5 iterations). It is important to note that while
the vector Fi is always normalized before decomposition and
display, Fi is never normalized during the actual iterations. It
is allowed to grow through the excitatory auto (output to output)
connections until either all the elements saturate at threshold or
the system becomes unstable. If recognition is perfect the output
plot will show a single peak for spheres, or a plateau and a peak
for mealworms and disks. The plateau is caused by cross-
excitation with other output vectors having the same 32-element
classification field. Each sphere has a different classification
vector so there is no cross-excitation.

The first line of the surface plot in figure 9 shows that
recognition of item #17 is nearly perfect after first-pass. It
appears that recognition falls off immediately after first-pass,
but this is just an illusion caused by the slight non-
orthogonality between the input and output vector sets. The
first-pass line shows the decomposition of AFoT, whereas the next
line (line number seven on the plot) is the decomposition of F1
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which is 0.99*F 0 + 0.05*AFoT-- mostly sonar signal input and only
less then 5% output. The projected length of vector F1 in the
direction of any the output vectors is very small; the surface
plot does not indicate this because it is a plot of cosine. The
plot shows that a perfect corner has been reached by about 50
iterations and that BSB has performed slight disambiguation on the
output (the line at 50 iterations is a little smoother than the
line representing first-pass).

RSULTS

For all the learned vectors (the odd orientations) first-pass
gave excellent recall and there was no need for BSB disambiguation
to isolate the top hypothesis. With one exception, the BSB
iterations always drew the output vector to a virtually perfect
corner-- making the top hypothesis absolutely clear. The
exception is with item number 11 (Figure 10-f) This figure shows
that the first-pass recall of item 11 is poor relative to the
other odd orientations of the mealworm. There is a significant
amount of excitation of item number 37 (large sphere) in Figure
l0-r. The subsequent iterations draw the vector away from item
11, and after 250 iterations an equilibrium is established mostly
between the mealworm category and various sphere categories. Even
after 250 iterations, no stable corner has been reached. The
confusion between items 11 and 37 may be partly explained by
visually comparing the two input vectors-- they show exactly the
same excitation of amplitude units. The subtractive error term in
the Widrow-Hoff procedure causes learning to be poor when the
different input vectors are very similar, or have substantial
length in the same direction.

Presenting the system with the unlearned even orientations of
the disk and mealworm gave us an indication of the system's
ability to generalize from a limited data base. We found that
first-pass categorize correctly about half the time, and that BSB
usually did not serve to strengthen the top hypothesis-- it tended
to distribute excitation over other categories (see figure 11).
Generalized recognition of the mealworm vectors was best for
orientations near +90, -90, and 0 degrees. The best recognized
even-numbered disk orientations were near +90 and -90 degrees.

We wanted to get some indication of the amount of "confusion"

that the system had between all the mealworm orientations and the
various sphere sizes. Specifically, we wanted to know which of
the sphere output vectors showed the greatest average excitation
when the system was presented with every mealworm orientation.
The Widrow-Hoff learning algorithm suppresses this kind of cross-
excitation by subtractive associations. Because all the input
vectors share similar features, the error term learned by one
orientation will effect the cross-correlations of other vectors.
Therefore, there is no simple way to determine which pairs of
vectors were the hardest to learn to discriminate. If a
particular sphere echo is similar to a number of mealworm
orientations, then depending on the exact order of learning you
might find a positive or negative residual correlation between the
input vector of any one mealworm orientation and the output vector
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of the sphere. As learning progresses the cross-correlation
between items will hover around zero but will not be exactly zero;
it will vary positively and negatively over the learning trials
depending upon which other vectors are presently being learned.
Thus, there is no simple way to determine the "confusion" between
the mealworm and sphere categories simply on the basis of their
cross-correlation strengths. We got an estimate, however, on the
assumption that large negative cross-correlations were just as bad
as large positive ones. This is counter-intuitive, since we tend
to think that knowing what an item is not tells you something
about what it is. For example, one might be tempt-H to see figure
11-b and say that when the system is presented with item #4, it is
confused most strongly by items #39, #40, and #41 (these show
strong positive excitation), and least strongly by items #37 and
#42 (these show strong negative excitation). However, the fact
that #37 and #42 show excitation at all, regardless of the sign,
indicates that the system was not able to distinguish the
"mealwormness" of item #4 from the "non-sphereness" it shares with
those two items. We made our calculations of system confusion by
taking the average magnitude of the excitation of a particular
sphere output vector with presentation of every mealworm input
vector. We did separate calculations for odd and even
orientations; these are presented in figures 12 & 13.

CONCLUSION

It is tempting to compare the performance of this system with
data from actual behavioral experiments, but this preliminary
system bears very little resemblance to the physical parameters of
the original discrimination task. We have only used echo returns
from a very limited range of orientations of mealworm, and we have
only used data collected from one mealworm. We cannot assume that
the bat has the necessary neural hardware to effect a Widrow-Hoff
learning scheme, and we know for a fact that the bat learned to
discriminate between inedible and edible targets through fewer
then 5000 presentations. The discrimination tasks themselves are
also incomparable, since the bat is only concerned with edible
v.s. inedible, while the network was constructed to discriminate
between individual orientations of mealworms and disks, and even
to identify the size of the spheres. The next step will be to
build a system that holds an input vector set containing echo
returns from all angles of a mealworm along with sphere and disk
vectors, and which associates these to only two output vectors--
'mealworm' and 'other'

We have shown that there is enough distinguishing information
in even the most seemingly ambiguous echo returns to allow a
rather idealized neural network to discriminate well beyond the
categories of inedible and edible. Most importantly, we have
shown that a model such as ours can be used to make predictions
about which items will be the most difficult for a bat to
discriminate between, and this suggests a series of behavioral
experiments to confirm the model. Once we have collected data
from the remainder of the mealworm orientations we can construct a
system that is more accurate to a true discrimination task, and
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which will yield more relevant predictions about the limits of

target discrimination in the bat.
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Data File Returned from LEARN.FOR

5000 TRIALS TOTAL

LCONST= 0.950000

VEC.# Presentations Cost Function

VEC: 1 LEARNED *242 0.999727
VEC: 2 LEARNED * 0 0.400495
VEC: 3 LEARNED *205 0.998903
VEC: 4 LEARNED * 0 0.093674
VEC: 5 LEARNED *240 0.993832
VEC: 6 LEARNED * 0 -0.061028
VEC: 7 LEARNED *223 0.987504
VEC: 8 LEARNED * 0 0.290609
VEC: 9 LEARNED *231 1.001384
VEC: 10 LEARNED * 0 0.370661
VEC: 11 LEARNED *200 0.919102
VEC: 12 LEARNED * 0 0.335900
VEC: 13 LEARNED *233 0.986664
VEC: 14 LEARNED * 0 0.234245
VEC: 15 LEARNED *200 1.005720
VEC: 16 LEARNED * 0 0.111282
VEC: 17 LEARNED *210 1.000441
VEC: 18 LEARNED * 0 0.302537
VEC: 19 LEARNED *203 0.985734
VEC: 20 LEARNED * 0 0.266765
VEC: 21 LEARNED *212 0.998938
VEC: 22 LEARNED * 0 0.276436
VEC: 23 LEARNED *231 0.970380
VEC: 24 LEARNED * 0 0.151559
VEC: 25 LEARNED *242 0.983373
VEC: 26 LEARNED * 0 0.128402
VEC: 27 LEARNED *241 0.992709
VEC: 28 LEARNED * 0 0.134533
VEC: 29 LEARNED *232 0.990835
VEC: 30 LEARNED * 0 0.502620
VEC: 31 LEARNED *217 0.942663
VEC: 32 LEARNED * 0 0.181624
VEC: 33 LEARNED *231 0.850625
VEC: 34 LEARNED * 0 0.177523
VEC: 35 LEARNED *224 0.803234
VEC: 36 LEARNED * 0 0.334827
VEC: 37 LEARNED *158 0.942247
VEC: 38 LEARNED *143 0.853462
VEC: 39 LEARNED *133 0.878983
VEC: 40 LEARNED *141 0.964195
VEC: 41 LEARNED *131 0.908487
VEC: 42 LEARNED *136 0.900051
VEC: 43 LEARNED *141 0.998985

Table 1

. .. . .
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Data File Returned from LEARN.FOR

5000 TRIALS 70TAL

LCONST= 0.S50000

VEC.# Preseitations Cost Function

VEC: 1 LEAR\TD *242 0.999727
VEC: 2 LEARI.:D * 0 0.400495
VEC: 3 LEARI\7D *205 0.998903
VEC: 4 LEARNED * 0 0.093674
VEC: 5 LEARNED *240 0.993832
VEC: 6 LEARND * 0 -0.061028
VEC: 7 LEARND *223 0.987504
VEC: 8 LEARNED * 0 0.290609
VEC: 9 LEARN.D *231 1.001384
VEC: 10 LEARNED * 0 0.370661
VEC: 11 LEARNED *200 0.919102
VEC: 12 LEARN D * 0 0.335900
VEC: 13 LEARN D *233 0.986664
VEC: 14 LEARNID * 0 0.234245
VEC: 15 LEARNID *200 1.005720
VEC: 16 LEAR:ID * 0 0.111282
VEC: 17 LEARNID *210 1.000441
VEC: 18 LEARNI) * 0 0.302537
VEC: 19 LEARNED *203 0.985734
VEC: 20 LEARNE) * 0 0.266765
VEC: 21 LEARNE ) *212 0.998938
VEC: 22 LEARNID * 0 0.276436
VEC: 23 LEARNE) *231 0.970380
VEC: 24 LEARNE') * 0 0.151559
VEC: 25 LEARNED *242 0.983373
VEC: 26 LE;,RNE ) * 0 0.128402
VEC: 27 LEA Nf-) *241 0.992709
VEC: 28 LEARNE) * 0 0.134533
VEC: 29 LEARNE) *232 0.990835
VEC: 30 LEARNE:) * 0 0.502620
VEC: 31 LEARNE) *217 0.942663
VEC: 32 LEARNE) * 0 0.181624
VEC: 33 LEARNE, *231 0.850625
VEC: 34 LEARNE) * 0 0.177523
VEC: 35 LEARNE) *224 0.803234
VEC: 36 LEARNE) * 0 0.334827
VEC: 37 LEARNE, *158 0.942247
VEC: 38 LEARNE) *143 0.853462
VEC: 39 LEARNE) *133 0.878983
VEC: 40 LEARNE) *141 0.964195
VEC: 41 LEARNE) *131 0.908487
VEC: 42 LEARNE *136 0.900051
VEC: 43 LEARNEI *141 0.998985

Table 1
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PROGRAM LEARN
CHARACTER DUMr.YCHAR*30
INTEGER INDUIM,SEED, SHIFT(18)
REAL DVEC(96,43)
REAL INVEC(96,43) ,RRVAL(43) ,AMP(43)
INTEGER TYPCNT(43),ISHARRAY(96)
REAL OUTTYP(32,9), OUTVEC(96,43)
REAL MATRIX(96,96)
REAL LCONST,TVEC(96),TVEC2(96)

WRITE(*,*) 'THIS PROGRA14 LEARNS ONLY ODD ORIENTATIONS OF MIEALWM-'
WRITE(*,*) ' AND DISKS'
WRITE(*,*) 'INPUT NUMBER OF TRIALS TOTAL:'
READ(*,900) NTRIALS

900 FORMAT(15)
WRITE(*,*) 'INPUT LEARNING CONSTANT (NEAR 0.80):'
READ(*,901) LCONST

901 FORMAT(F1O.6)
SEED = 1678891
RSUM=RAN (SEED)
OPEN (10,FILE='MEALWM.VEC',STATUS='OLD')
DO 1 I=1,18
READ (10,'(A20)')DUMMYCHAR
DO 2 3=1,80
READ (10,'(18)') INDUM
DVEC( J,I )=( INDUM-2048 )/2048 .0

2 CONTINUE
READ (10,'(14)') SHIFT(I)

1 CONTINUE
CLOSE( 10)
Do 3 1=1 ,18
CALL NORMIALIZECDVEC(1,I),64)
DO 3 3=1,64

3 INVEC(3,I)=DVEC(3,I)

OPEN (10,FILE='DISC12.VEC',STATUS='OLD')
DO 4 I=1,18
READ (10, '(A20)' )DUMl-YCHAR
Do 5 3=1,80
READ (10,'(18)1) INDUM1
DVEC( 3,1)=( INDUM-2048 )/2048 .0

5 CONTINUE
READ (10,'(14)') SHIFT(I)

4 CONTINUE
CLOSE ( 10)
Do 6 i=1,18
CALL NORMALIZE(DVEC(1,I),64)
DO 6 3=1,64

6 INVEC (J,1+18) =DVEC (3,1)

OPEN (10,FILE='SPHERES.VEC',STATUS='OLD')
Do 7 I=1,7
READ (10,' (A20)' )DUfMH-YCHAR
Do 8 j=1 ,80
READ (10,'(18)') INDUM
DVEC(J,I)=(INDU*1-2048)/2048.0

8 CONTINUE
READ (10,'(14)') SHIFT(I)

7 CONTINUE
DO 9 I=1,7



Page 36
CALL NORM-ALIZE(DVEC(1,I),64)
DO 9 J=1,64

9 INVEC(J,I+36)=DVEC(J,I)
CLOSE( 10)

OPEN( 10, FILE='AI-IPLITUD.DAT' ,STATUS='OLD')
READ(10,'(F15.7)') (AMP(I) ,I-1, 43)
CLOSE( 10)

C AMPLITUDES RANGE FROMI ABOUT 0-1-3.6 OR 0--4
DO 10 ITYP=1,43
ICURS=INT( (LOG(AIP( ITYP) )+2.3 )*26. 0/3. 65+0. 5555 1+1
DO 12 J= 1,32
DVEC(3, ITYP) =0.0

12 IF ((J.GE.ICURS).AND.(J.LE.ICURS+5)) DVEC(J,ITYP)=1.0
CALL NORMALIZE (DVEC(1,ITYP),32)
DO 14 J=1,32

14 INVEC(3+64 ,ITYP)=0.5*DVEC(J, ITYP)
10 CONTINUE

CLOSE( 10)

OPEN(10,FILE='SHUFFLE.DAT ,STATUS='OLD')
READ(10, '(13)') (ISHARRAY(I),I=1,96)

OPEN (11,FILE='WALSH64.DAT',STATUS='OLD')
DO 20 I=1,43
DO 20 J=1,64

20 READ(11,200) OUTVEC(J+32,I)
200 FORMATCF3.1)

CLOSE ( 11)

C **Read in 32dim walsh codes for type field of vector
C we'll need 1+1+7=9 of them for 1*realwm,1*discl2, and 7*sphere

OPEN (ll,FILE='WALSH32.DAT',STATUS='OLD')
Do 30 I=1,9
Do 30 J=1,32

30 READ (11,200) OUTTYP(J,I)
C C* Assign type 1 to mealworm vectors

Do 32 I=1,18
DO 32 J=1,32

32 OUTVEC( 3,1)=OUTTYP( 3,1)
C *** Assign type 2 to discl2 vectors

Do 34 I=1,18
Do 34 J=1,32

34 OUTVEC( 3,1+18 )=OUTTYP( 3,2)
C *** Assign types 3-9 to spheres

Do 36 I=1,7
DO 36 3=1,32

36 OUTVEC (J,I+36) =OUTTYP (3,1+2)
CLOSE( 11)

OPEN(11,FILE='VECTORS.GPH',STATUS='NE ;')
WRITE(ll,'(A20)') 'VECTORS'
WRITE(ll,'(A20)') 'X-AXIS'
WRITE(ll,'(A20)') 'Y-AXIS'
WRITE(il, '(A20) ') 'Z-AXIS'
WRITE(1l, '(IS)') 43*96
DO 40 I=1,43
CALL NORMALIZE(OUTVEC(1,I),96)
CALL NORIHALIZE(INVEC(1,I),96)
DO 45 J=1,96



45 DVEC( 3,1)=INVEC( 3,1)Pae3

DO 46 J=1,96
46 INVEC (J,1 )=DVEC (ISHARRAY (3) ,I)

WRITE(11, '(F7.4)' ) (INVEC(U,I),U=1,96)
40 TYPCNT(I)=O

DO 50 I=1,96
DO 50 J=1,96

50 MATRIX(J,I)=0.0
WRITE( *,*)
WRITE (*, *)
WRITE( *,*)

DO 75 ITVAL=1,NTRIALS
ISUM=INT( RAN( SEED) *100)+
IF ((ISUM.GT.0).AND.(ISUM-.LE.40)) IVEC=INT(RAN(SEED)*9)*2+1
IF ( (IStJMI.GT.40) .AND. (ISUM.LE.80) ) IVEC=INT(RAN(SEED)*9)*2+19
IF (ISUDM.GT.80) IVEC=INT(RAN(SEED) *7 )+37
TYPCNT( IVEC)=TYPCNT( IVEC)+1

C WRITE(*,*) 'TRIAL:',ITVAL,' TYPE:',IVEC
C *****I-IATRIX TIDIES VECTOR

DO 60 J=1,96
TVEC2 (3)=0.0
TVEC(J3)=0 .0
Do 60 R=1,96
TVEC2 (3)=TVEC2(C ) +MATRIX( R,3) *OUTVEC( R, IVEC)

60 TVEC(J)=TVEC(J)+M.ATRIX(R,J) *INVEC(R, IVEC)
C *****SUBTRACT VECTORS & SCALAR MULTIPLY

DO 65 3=1,96
TVEC2(3)=(OUTVEC(J,IVEC)-TVEC2(J))*LCONST

65 TVEC(J)=(OUTVEC(J,IVEC)-TVEC(J) )*LCONST
C *****OUTER PRODUCT & MATRIX ADD

DO 70 3=1,96
DO 70 R=1,96
MATRIX( R,3) =MATRIX( R,3) +TVEC2 (3)*OUTVEC (R, IVEC)

70 MATRIX(R,J)=MATRIX(R,J)+TVEC(J)*INVEC(R, IVEC)
75 CONTINUE

OPEN(12,FILE='MATRIX.DAT',STATUS='NEW')
WRITE( 12, *)
WRITE(12,499) NTRIALS

499 FORMAT(' NUMBER OF TRIALS TOTAL= 1,17)
WRITE(12,498) LCONST

498 FORDMAT(' LEARNING CONSTANT= ',F1O.6)
DO 82 1-1,96
DO 82 J=1,96

82 WRITE(12,221) MATRIX(J,I)
221 FORMAT(F1O.6)

CLOSE (12)

OPEN( 12, FILE=' LEARN .DAT ' ,STATUS= 'NEW.')
220 FORMAT(' VECTOR NUMBER, NUMBER OF PRESEINTATIONS, COST FUNCTION')

WRITE(12,222) NTRIALS
222 FORMAT(' ',IS,' TRIALS TOTA'L')

WRITE(12,223) LCONST
223 FORMAT(' LCON, ST= ',F1O.6)

WRITE(C12,220)
RMEAN=0 .0
DO 100 1=1,43
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PROGRAM DISCRIII
CHARACTER DUMMIlYCHAR*40 ,CHDUtM*1
CHARACTER*20 MATFIL*20
INTEGER INDUM,SEED, SHIFT(18)
REAL DVEC(96,43)
REAL INVEC(96,43)
INTEGER TYPCNT( 43) ,ISHARRAY( 96)
REAL OUTTYP(32,9), OUTVEC(96,43)
REAL MATRIX(96,96) ,THRESH
REAL TVEC(96) ,GVEC(96) ,HEAT,AMP(43) ,BVEC(96) ,RANVEC(96)
REAL RARRAY( 50) ,RDEC,RFEED,MAXLEN
DATA MATFIL / 'MAT.DAT 1

SEED = -1678711
THRESH= 1.40

C SET RDECAY To 75 ITERATION HALF LIFE
RDEC=0 .9908
RNQUOT= 0.0
RFEED=0.05
RBIAS=0 .0
IHDECAY=50
IHSTART=50

C RHDECAY=(0.5)**(1/IHDECAY)
I INT=1 0
HEAT=0 .0
INPFLG=1
RSUM=RAN( SEED)
WRITE(*,*) 'READING INPUT VECTORS'
OPEN (10,FILE='MEALWMI.VEC' ,STATUS='OLD')
DO 1 1 =1 ,18
READ (10,'(A20)')DU'IMYCHAR
DO 2 J=1,80
READ (10,'(18)') INDUM
DVEC(J,I)=(INDUM-2048)/2048.0

2 CONTINUE
READ (10,'(14)') SHIFT(I)

1 CONTINUE
CLOSE( 10)
DO 3 I=1,18
CALL NORDIALIZECDVEC(1,I),64)
DO 3 J=1,64

3 INVEC(J, I)=DVEC(J, I)

OPEN (10,FILE='DISC12.VEC',STATUS='OLD')
DO 4 I=1,18
READ (10,'(A20)')DUrMYCHAR
DO 5 J=1,80
READ (10,'(18)') INDUM
DvEC( 3,1)=( INDUr1-2048 )/2048 .0

5 CONTINUE
READ (10,'(14)') SHIFT(I)

4 CONTINUE
CLOSE ( 10)
DO 6 I=1,18
CALL NORMALIZE(DvEC(1,I),64)
DO 6 3=1,64

6 INVEC(J,I+18)=DVEC(J,I)

OPEN (10,FILE='SPHERES.VEC',STATUS='OLD')
00 7 1=1,7
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READ (10,' (AZ0) ')DU1111YCHAR
DO 8 J=1,80
READ (10,'(18)') INDUM
DVEC( 3,1)=( INDU1--2048 )/2048 .0

8 CONTINUE
READ (10,'(14)') SHIFT(I)

7 CONTINUE
DO 9 I=1,7
CALL NOR1,1ALIZE(DVEC(l,I),64)
DO 9 J=1,64

9 INVEC (J,1+36) =DVEC (J,1)
CLOSE( 10)

WRITE(*,*) 'READING SONAR AMPLITUDES'
OPEN (10,FILE='AMIPLITUD.DAT',STATUS='OLD')
READ(10, '(F15.7)' ) (AIP(I),I=1,43)
DO 10 ITYP=l,43
ICURS=INT( (LOG(AN-P( ITYP) )+2.3 )*20/3 .65+0. 5555)+
DO 12 3=1,32
DVEC (3,ITYP) =0.0

12 IF ((J.GE.ICURS) .AND.(J.LE.ICURS+5)) DVEC(J,ITYP)=1.O
CALL NORMALIZE(DVEC(1,ITYP),32)
DO 14 3=1,32

14 INVEC(J+64, ITYP)=0. 5*DVEC(J,ITYP)
10 CONTINUE

CLOSE( 10)

OPEN(10,FILE='SHUFFLE.DAT',STATUS='OLD')
READ(10,'(13)' ) (ISH-ARRAY(I),I=1,96)

WRITE(*,*) 'READING OUTPUT VECTORS'
OPEN (11,FILE='WALSH64.DAT',STATUS='OLD')
Do 20 I=1,43
Do 20 J=1,64

20 READ(11,97) OUTVEC(J+32,I)
97 FORMAT(F3.1)

CLOSE ( 11)

C **Read in 32dim walsh codes for type field of vector
C **we'll need 1+1+7=9 of them for l*mealwm,1*discl2, and 7*sphere

OPEN (11,FILE='WALSH32.DAT',STATUS='OLD')
Do 30 I=1,9
Do 30 3=1,32

30 READ (11,97) OUTTYP(3,I)
C *** Assign type 1 to mealworm vectors

DO 32 1=1,18
DO 32 3=1,32

32 OUTVEC(J,I)=OUTTYP(3,1)
C *** Assign type 2 to discl2 vectors

Do 34 I=1,18
Do 34 3=1,32

34 OUTVEC (3,I+18) =OUTTYP (J,2)
C *** Assign types 3-9 to spheres

DO 36 I=1,7
Do 36 3=1,32

36 OUTVEC( 3,I+36 )=OUTTYP( 3,1+2)

DO 40 I=1,43
CALL NORMALIZE(OUTVEC(l,I),96)
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CALL NORM*ALIZE(INVEC(I,I),96)
DO 45 J=1,96

45 DVEC(J,I )=INVEC(J, I)
DO 46 3=1,96

46 INVEC(J,I)=DVEC(ISHARRAY(J) ,I)
40 TYPCNT(I)=0

DO 50 I=1,96
DO 50 J=1,96

50 MATRIX(J,I)=0.0
WRITE( *,*)
WRITE(*,*)
WRITE(*,*

192 WRITE(*,*) 'READING MATRIX ',MATFIL
OPEN(12,FILE=MATFIL,STATUS='OLD')
READ( 12,99) DUMMYCHAR
READ( 12,99) DUMMYCHAR

99 FORM4AT( A40)
READ( 12,99) DUI4MYCHAR
DO 82 I=1,96
DO 82 J=1,96

82 READ(12,98) MATRIX(J,I)
98 FORMAT(F1O.6)

CLOSE (12)

190 CONTINUE
199 WRITE(*,*) 'INPUT TYPE 1-43 (0 TO CHANGE PARAMTERS):

READ(*,200) ITYP
200 FORMAT(17)

IF (ITYP.NE.0) GOTO 196
191 WRITE(*,*)

WRITE(*,*) 'T......... CHANGE THRESHOLD'
WRITE(*,*) 'I.......... RUN INPUT VECTORS'
WRITE(*,*) '0......... RUN OUTPUT VECTORS'
WRITE(*,*) 'D......... CHANGE DECAY/FEEDBACK PARAMETERS'
.WRITE(*,*) 'N......... CHANGE THE NOISE QUOTIENT'
WRITE(*,'*) 'F......... CHANGE INTERVAL BETWEEN GRAPH FRAMES'
WRITE(*,*) 'M......... READ IN NEW MATRIX'
READ (*,I(Al)') CHDUM
IF (CHDUM.NE.'T') GOTO 181
WRITE(*,*
WRITE(*,*) 'OLD THRESHOLD= +/-' ,THRESH
WRITE(*,*) 'INPUT NEW THRESHOLD *R:'
READ (*,'(F10.6)') THRESH
WRITE(*,*) 'THRESHOLD CHANGED TO +i/-',THRESH
GOTO 191

181 IF (CHDUM.NE.'I') GOTO 182
INPFLG=1
WRITE(*,*
WRITE(*,*) 'NOW RUNNING INPUT VECTORS'
GOTO 191

182 IF (CHDUM.NE.'O') GOTO 183
INPFLG=0
WRITE( *,*)
WRITE(*,*) 'NOW RUNNING OUTPUT VECTORS'
GOTO 191

183 IF (CHDUM.NE.'D') GOTO 184
WRITE( *,*)



WRITE(12,201) RSUMPae4

'201 FORMAT(F10.6)
IF (I.EQ.ITYP) RARRAY(T)=RSUI

140 CONTINUE
C WRITE(*,*)

WRITE( *,*)
150 CONTINUE

IVAL=I TERS
WRITE(12,202) IVAL

202 FORMAT(I4)
DO 160 T=1,ITERS

160 WRITE(12,201) RARRAY(T)
197 CONTINUE

CLOSE( 12)
GOTO 190

END

SUBROUTINE NORIIALIZE(VECTOR,DIM)
REAL VECTOR(100),RSUM
INTEGER DIM
RSUM=0 .0
DO 25 J=1,DII1

25 RSUM=RSUM*+VECTOR (J) *VECTOR(C )
RSUM=SQRT (RSUr1)
IF (RSUIM.LT.(0.0000001)) GOTO 50
DO 30 J=1,DIM

30 VECTOR(J)=VECTOR(J)/RSUM
RETURN

50 WRITE(*,*) 'NORMALIZE ZERO VECTOR tttt~~
RETURN
END

C SUBROUTINE BOIL(VECTOR,RHEAT,SEED,RHDECAY)
C REAL VECTOR(96),THRESH,KICK,RHDECAY,RHEAT,X1,X2,S
C INTEGER SEED
C
C DO 10 I=1,96
C 5 X1= RAN(SEED)*2.0-1.0
C X2= RAN(SEED)*2.0-1.0
C S=Xl*X1+X2*X2
C IF (S.GE.(1.0)) GOTO 5
C X1=X1*SQRT( -2. 0*LOG( S)/S)
C KICK=ABS(X1)*2.0*RHEAT/100.0
C IF (KICK.GT.2) KICK=2.0
C VECTOR(I)=VECTOR(I)- KICK*VECTOR(I)
C 10 CONTINUE
C RHEAT=RHEAT*RHDECAY
C RETURN
C END

SUBROUTINE BOIL(VECTOR,HEAT,SEEDRHDECAY)
REAL VECTOR(96),THRESH,HEAT,KI-K,RHDECAY,RHEAT
INTEGER SEED, IHEAT
IHEAT=INT( HEAT)
DO 5 I=1,IHEAT
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